

Recombination Zone Modeling in Organic Light Emitting Field Effect Transistors

Molecular Materials and Nanosystems

Dimitri Charrier Martijn Kemerink René Janssen Organic Transistor

Theoretical Predictions

D.L. Smith et al, J. Appl. Phys. 101, 084503 (2007)

(recombination according to Langevin)

Martijn Kemerink

Experimental Results

Scanning Kelvin Probe Microscope

Confocal microscope / High fields PPV

J.S. Swensen *et al*, J. Appl. Phys. **102**, 013103 (2007)

E.C.P. Smits et al, Phys. Rev. B 76, 125202 (2007)

Scanning Kelvin Probe Microscope = SKPM

Interleave mode

-Atomic Force Microscope in tapping mode -Surface potential at Lift Height Z_L

Principle: First Harmonic Force Microscope

$$F = -\frac{V^2}{2}$$

 $\frac{dC}{dz} = force between tip and sample$ V = tip-sample voltage differenceC = capacity between tip and sample

$$V = V_{dc} + V_{ac}\sin(\omega t) - V_{cpd}$$

 $F = F_{dc} + F_{\omega} \sin \omega t + F_{2\omega} \cos 2\omega t$

 $V_{dc} = tip \ voltage$ $V_{ac} = amplitude \ voltage$ $V_{cpd} = contact \ potential \ difference$

$$F_{\omega} = \frac{dC}{dz} V_{ac} (V_{cpd} - V_{dc}) \quad \begin{array}{l} \text{Then } V_{cpd} = V_{dc} \\ \text{For } F_{\omega} = 0 \end{array}$$

Instrumental Problem: SKPM Response

SKPM Response 3D Model

Simulated with Finite Element Program (COMSOL)

Scattering = meshing limitation

Calculated SKPM Response

D. Charrier et al, ACS Nano 2, 622-626 (2008)

Tip = Apex + Cone +Lever

D. Charrier et al, ACS Nano 2, 622-626 (2008)

SKPM Response for FET

Theoretical predictions (drift) from Smits = input of SKPM modeling

FWHM = "0" nm

'real' FWHM < 0.5 micron

SKPM

experiments + modeling

Note: We checked that the SKPM probe influence only few % the source drain current.

Conclusions

•Identified the full problem of SKPM response:

Developed a numerical model to predict the SKPM response from any theoretical potential.

FWHM recombination:

 theoretical (Langevin)
 200 nm
 experimental SKPM response
 raw
 2.1 μm
 difference with model
 0.5 μm

•SKPM is not optimal for investigating the recombination width.

TU/e

Molecular Materials and Nanosystems Group

Martijn Kemerink René Janssen Simon Mathijssen

Clean room facilities

Barry Smalbrugge Tjibbe de Vries Erik-Jan Geluk

For discussions and data

Reinder Coehoorn Edsger Smits Dago de Leeuw