Prediction and reconstruction of Scanning Kelvin Probe Microscope measurements on Organic Ambipolar Field Effect Transistors

Dimitri Charrier

TU/e

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Plan

- Organic Ambipolar Field Effect Transistor
- Recombination width
 - Langevin recombination
 - Experiments
- Simple prediction/reconstruction model
 - Step edge model
 - Prediction
 - Reconstruction

Organic Ambipolar Field Effect Transistor

Potential applications: organic laser if good performances. Important parameters: carrier densities *n p*, width *W*. / applied physics department

Langevin recombination

Reported experimental results

Optical technique

Scanning Kelvin Probe Microscope (SKPM) NiDT

SKPM Response for FET

SKPM experiments + 3D modeling

'real' W < 0.5 micron

Note: We checked that the SKPM probe influence only few % the source drain current. / applied physics department

Simple prediction/reconstruction

$$y_{ref}(x) = h_{ref}(x) \otimes x_{ref}(x)$$
$$F(y) = F(h)F(x)$$

 $h = \operatorname{Apex}(x, y, z) + \operatorname{Cone}(x, y, z) + \operatorname{Lever}(x, y, z) = \operatorname{electrostatic convolution}$

Hypothesis: one single reference measurement contains all / applied physics department electrostatic interactions

Step edge convolution → impulse response properties

Prediction from step edge response

Reconstruction from step edge response

Summary

- Electrostatic tip-electrodes convolution leads to amplitude loss of measured surface potential with SKPM. Good agreement between experiments and 3D modeling.
- Prediction and Reconstruction methods successfully working using the step edge response tool.
- A higher resolution of SKPM is reached with the step edge response tool.
- W recombination:
 - theoretical (Langevin) ~ 200 nm
 - experimental SKPM response
 - raw ~ 2 μm
 - difference with model (β =100) 0 µm

Acknowledgments Nano (Mano)

TU/e

Molecular Materials and Nanosystems Group

Martijn Kemerink René Janssen Simon Mathijssen

Clean room facilities

Barry Smalbrugge Tjibbe de Vries Erik-Jan Geluk

Data, discussions, samples

Edsger Smits Reinder Coehoorn Dago de Leeuw

